

USING WEIGH-IN-MOTION DATA IN A MODERN TRUCK TRAFFIC INFORMATION SYSTEM

Alan Clayton, P.Eng.
Jeannette Montufar, P.Eng.
Dan Middleton, P.E.

University of Manitoba Transport Information Group

INTRODUCTION

- demand for enhanced truck traffic information systems
 - transportation planning
 - highway design
 - safety analysis
 - environmental assessment
 - economic evaluation
 - asset management
 - enforcement
- the new Traffic Monitoring Guide and AASHTO Pavement Design Guide

BACKGROUND

- Manitoba Transportation and Government Services (MTGS) commissioned UMTIG to create a truck traffic information system
- > truck traffic volumes and characteristics govern:
 - highway planning and programming
 - traffic engineering
 - road use management
 - design and evaluation of weight and safety enforcement activities
 - bridge design and management

MANITOBA TRUCK TRAFFIC INFORMATION SYSTEM

PURPOSE

- gain an ever increasing understanding of truck traffic, improved accuracy and forecasting abilities
- ➤ the ultimate goal is production of realistic and accurate truck loading values for each season, for each highway weight class throughout the province

SYSTEM REQUIREMENTS

- ➤ 8 research and development projects facilitating achievement of this goal involve the development of
 - core database for truck traffic
 - technique for converting short-term counts
 - assignment of each highway link to a TTPG
 - AADTT flow map
 - method and database for axle weight estimation
 - estimates of current year truck loading for each link
 - technique for future truck traffic forecasting
 - truck monitoring/analysis system to be used by department

DEVELOPMENT, EXPERIENCES AND APPLICATIONS

- development and implementation of truck traffic information system focused on:
 - design, installation and operation of an expanded WIM/AVC network
 - analysis of classification and temporal distribution of data generated by WIM/AVC network
 - design and installation of automated truck weight survey system, and analysis of survey results
 - GIS-T platform servicing truck traffic information system
 - updated analysis of selected freight databases

MANITOBA WIM/AVC NETWORK

- > considerations in designing the network:
 - areas lacking historical truck traffic monitoring
 - changes in road network altering truck routing
 - changes in trucking demand
 - changes in trade arrangements
 - changes in truck size and weight regulation
- physical placement of WIM/AVC device is based on:
 - availability of communication system
 - adequacy of pavement structures
 - accessibility of sites to adequate maintenance

MANITOBA WIM/AVC NETWORK

TRUCK CLASSIFICATION AND TEMPORAL DISTRIBUTIONS

- based on WIM/AVC data
- Manitoba uses FHWA 13-class scheme
- classes 1-4 are "non-trucks"
- classes 5-13 are trucks
- truck traffic data, for each station, is summarized on a "truck traffic fact sheet"

TRUCK CLASSIFICATION AND TEMPORAL DISTRIBUTIONS

STATION 86

Location: HWY 101, 1.0 km E of Wenzel Road

Load Class : RTAC

Functional Class: Undivided Arterial

Year of Installation: 1997 as Golden River, converted to

Diamond AVC in 1999

Type of Equipment: PHOENIX permanent AVC

STATION 86

Eastbound

Westbound

STATION 86

Eastbound

Westbound

AUTOMATED TRUCK WEIGHT DATA COLLECTION SYSTEM AT WEIGH SCALES

- two principal data source from truck weight perspective are:
 - automated, year-round sampling of static truck weights
 - truck weight sampling from properly calibrated
 WIM devices

SURVEY REQUIREMENTS

- 1% sample of all truck movements is collected randomly by:
 - time of day
 - day of week
 - month of year
- basic requirements are:
 - configuration selections
 - axle configurations
 - body type
 - static weight of each axle

EXAMPLE OF GVW DISTRIBUTIONS

GIS-T PLATFORM

- > develops standardized information database to:
 - visually represent truck traffic information
 - integrate truck traffic related data
 - conduct spatial and network analysis on the data set
- provides a user friendly interface to the truck traffic information system
- structured around three major transportation components:
 - transportation facilities (T)
 - activity system (S)
 - transportation flow (F)

CONCLUDING REMARKS

- Manitoba's truck traffic information system is an emerging concept that can facilitate decision-making
- WIM/AVC devices provide tremendous amount of useful data about trucking
- Making informed decisions requires continual updates to understand the transportation system
- Understanding requires being able to interpret the information
- Information is data with meaning and context added